
INTRODUCTION
Pattern design is a crucial aspect of textile design [1].
Traditionally, designers extensively explore sources
of inspiration [2], extracting core elements such as
structure, perspective, lines, texture, and colour.
These elements are then used to upgrade and recre-
ate the artistic essence of the inspiration materials
through hand-drawing or software [3], ultimately com-
pleting the pattern design. This process tests the
designer’s artistic imagination, perspective selection,
information collection, and abstract expression skills,
and is extremely time-consuming and labour-inten-
sive. In recent years, the adoption of new digital tech-
nologies has enabled the automatic recombination of
core elements from inspiration materials, rapidly gen-
erating a large number of pattern drafts for designers

to choose from [4]. This approach not only signifi-
cantly improves design efficiency but also enhances
the designer’s creativity and imagination. This trend
is set to become a new standard in the field of textile
pattern design.
In the field of computer image design, the rapid
development of deep learning technology based on
convolutional neural networks has driven research in
textile image generation [2–6]. Li et al. [5] achieved
camouflage pattern generation using the CycleGAN
algorithm. Wu et al. [6] employed generative adver-
sarial networks (GANs) to create fashionable
Dunhuang-style clothing. Liu et al. [7] utilised condi-
tional GANs for innovative designs of traditional
Chinese textile patterns. However, GANs face sever-
al challenges, including training instability, the need
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A fast multi-scale textile pattern generation method combining layered loss and convolutional attention
This paper introduces a neural network-based algorithm for the rapid multi-scale synthesis of textile patterns. The
algorithm achieves comprehensive textile pattern style reconstruction by utilising low-level feature loss, represented by
the Gram matrix, to capture colour and texture, and high-level feature loss, represented by the Wasserstein distance, to
capture complex structures and semantic content. The convolutional attention feature enhancement module is
incorporated to improve pattern detail clarity and overall visual quality by emphasising significant features and
suppressing irrelevant information. Furthermore, the multi-scale optimisation module enhances texture and layering by
optimising the image at different scales. Experimental results demonstrate that, compared to existing methods, this
approach offers superior visual effects in pattern synthesis and scalability in pattern size. It not only generates
high-quality textile patterns but also excels in managing complex textures and maintaining semantic consistency. This
method aids designers in extending pattern designs and advances the intelligent development of textile design and
production.
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O metodă rapidă de generare multi-scală a modelelor textile care combină pierderea stratificată
și atenția convoluțională

Această lucrare prezintă un algoritm bazat pe o rețea neurală pentru sinteza rapidă multi-scală a modelelor textile.
Algoritmul realizează o reconstrucție cuprinzătoare a stilului modelelor textile prin utilizarea pierderii de caracteristici de
nivel scăzut, reprezentată de matricea Gram, pentru a capta culoarea și textura, și pierderea de caracteristici de nivel
înalt, reprezentată de distanța Wasserstein, pentru a capta structuri complexe și conținut semantic. Modulul de
îmbunătățire a caracteristicilor atenției convoluționale este încorporat pentru a îmbunătăți claritatea detaliilor modelului
și calitatea vizuală generală prin accentuarea caracteristicilor semnificative și suprimarea informațiilor irelevante. În plus,
modulul de optimizare multi-scală îmbunătățește textura și stratificarea prin optimizarea imaginii la diferite scale.
Rezultatele experimentale demonstrează că, în comparație cu metodele existente, această abordare oferă efecte
vizuale superioare în sinteza modelelor și scalabilitate în dimensiunea modelelor. Aceasta nu numai că generează
modele textile de înaltă calitate, dar excelează și în gestionarea texturilor complexe și menținerea coerenței semantice.
Această metodă îi ajută pe designeri să extindă modelele și promovează dezvoltarea inteligentă a designului și
producției textile.
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for large datasets, long training times, high computa-
tional power requirements, and difficulty in generat-
ing high-resolution images [8]. Karagao et al. [9]
employed diffusion models for textile pattern genera-
tion, while Xie et al. [10] proposed a multi-stage diffu-
sion model that integrates high-level design concepts
with low-level clothing attributes for generating and
editing fashion design drafts. Although diffusion mod-
els produce high-quality images, they demand even
greater GPU computational power, limiting their prac-
tical application due to high computational costs.
Style transfer, as a significant branch of image gen-
eration technology, enables the application of one
image’s style to another, imbuing it with a new artis-
tic flair to create a novel image. Compared to other
image generation technologies, style transfer offers
greater flexibility and fewer usage restrictions, mak-
ing it highly applicable in computer art and visual
design. This capability opens up innovative possibili-
ties for textile pattern design. Some researchers have
already applied it to textile pattern generation. For
instance, Sun et al. [11] developed a fast textile pat-
tern generation algorithm combining Markov Random
Fields (MRF) and Gram methods, while Qiu et al. [12]
proposed a colour-optimised local pattern style trans-
fer method for fabrics.
Style transfer originates from non-photorealistic ren-
dering (NPR) and is closely related to texture synthe-
sis and texture transfer. Gatys et al. [13] pioneered
neural style transfer by extracting image features
using convolutional neural networks and constructing
Gram matrices to capture image styles, achieving oil
painting style transfer through high-level feature pro-
cessing. This method remains a gold standard today.
Subsequently, Johnson et al. [14] introduced a fast
style transfer algorithm, enabling rapid image style
transfer through iterative optimisation of the genera-
tion model. Li et al. [15] proposed a neural style
transfer method based on patch matching using
MRF. However, due to the high computational cost of
numerous patch matches, the method has long run-
ning times and struggles with images exhibiting
large-scale structural differences. The introduction of
the Wasserstein distance improved the measurement
of image style distribution differences, enhancing
style transfer quality [16–20]. However, its high com-
putational complexity limits its direct application in
neural style transfer [16].
Despite these advancements, applying neural style
transfer to textile pattern generation still faces limita-
tions. Existing methods are predominantly used for
abstract creations like artistic paintings, focusing on
the transfer and reconstruction of global style fea-
tures and local texture features while neglecting the
integrity of semantic structure features in patterns
[20]. Additionally, during the generation process, local
structural information is often incomplete, leading to
artefacts in areas of repeated textures, thereby
affecting pattern quality. Textile pattern design, unlike
abstract art, requires the preservation of the com-
plete regularity of local pattern structures. Capturing

and transferring complex style features while main-
taining the integrity of local structures and enhancing
visual naturalness and generation efficiency remains
a challenge.
To address these issues, this paper proposes a mul-
tiscale style transfer algorithm for textile pattern gen-
eration, incorporating hierarchical style loss optimisa-
tion and convolutional attention feature extraction.
This approach maintains the integrity of local semantic
structures in style images during pattern generation,
resulting in improved visual effects. It is well-suited
for textile pattern generation and demonstrates high-
er generation efficiency compared to similar methods.

TEXTILE PATTERN GENERATION ALGORITHM
The textile pattern generation model proposed in this
paper consists of four modules: the initialisation mod-
ule, the feature extraction enhancement module, the
loss calculation module, and the multiscale optimisa-
tion module, as shown in figure 1. First, the target
pattern is input, and style initialisation is performed.
Depending on the input image size, a multiscale divi-
sion is conducted to generate an optimisation pyra-
mid sequence for the pattern. The feature network
extracts the pattern’s style features, and the channel
spatial attention module enhances and integrates
these features at the style layer. The loss calculation
module computes the feature loss at different levels,
and combined with the multiscale optimisation mod-
ule, iterative optimisation of the pattern is performed
at different scales, ultimately generating a new style
pattern. 

Style loss function
In this paper, the VGG19 network is used as the style
feature extractor. It retains 16 convolutional layers
and removes the original fully connected layers to
reduce computational overhead. All pooling layers
are replaced with average pooling to better preserve
global information and reduce overfitting. The net-
work layers {conv1_1, conv2_1, conv3_1, conv4_1,
conv5_1} are selected as style layers, and the style
feature extraction layers are designated as Layer1-5.
The shallow layers (close to the input layer) of the
network mainly capture primary features such as
edges, textures, and colours, while the deep layers
capture more complex structures, content objects,
and style patterns [25]. 
The style loss function is a core component of image
style feature reconstruction [25], crucial for the over-
all style effect of the generated image. Previous stud-
ies [13–16] typically used a single style loss function
for image style reconstruction, which can quickly
complete the reconstruction of the pattern style but
often fails to adequately represent both low-level and
high-level features. This paper employs a hierarchi-
cal approach, combining different style losses to
simultaneously express low-level and high-level fea-
tures.
To better reconstruct style features at different levels,
this paper uses Gram matrices for the shallow low-level
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features extracted by Layer1, Layer2, and Layer3 in
the network. These features mainly express the
stylistic elements of the image, with little association
to specific spatial structures. Gram matrices effec-
tively capture fundamental texture and colour infor-
mation [13]. Unlike traditional mean-squared error
quantification of Gram matrix differences, shallow
features are primarily edges, corners, and colour
blocks, and their quantity is far less than the number
of pixels. Therefore, this paper normalises features
by dividing by the number of features. This approach
balances the contribution of features rather than the
overall pixel count, which is beneficial for expressing
primary features. The feature-normalised Gram
matrix is defined as:

norm k  Fik  FjkGij =               . (1)
C

where Fik represents the feature value of the i th chan-
nel at position k in the feature map of the input image,
Fjk is the feature value of the j th channel at the same
position, and C denotes the number of channels in
the feature map.
To calculate the mean error between the Gram matri-
ces of target features and generated features, gradi-
ent normalisation is employed to mitigate numerical
issues during parameter updates, thus enhancing the
stability of the iterative process. The formula for cal-
culating the shallow layer style loss function based
on the Gram matrix is as follows:

norm                normi,j  (Gij      (g) – Gij      (s))2

Lstyleg =                                         . (2)norm                normi,j  |Gij      (g) – Gij      (s)| + ϵ
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norm                      normWhere Gij (s) and Gij      (g) represent the feature-
normalised Gram matrices of the style image and the
generated image, respectively. The term ϵ is a regu-
larisation term to avoid division by zero during com-
putation.
Since Gram matrices do not preserve spatial infor-
mation [19, 20], they struggle to accurately represent
the structure and semantic information of high-level
features, making it easy to overlook the content and
complex components of the image in style recon-
struction. For the high-level features extracted by
Layer4 and Layer5, this paper uses the mean and
covariance matrices to jointly describe the feature
distribution of the target image and the generated
image. By calculating the Wasserstein distance
under a Gaussian distribution as the style loss, this
approach better preserves spatial information and
more comprehensively expresses the style informa-
tion of deep features. 
The specific method is as follows. First, compute the
mean vector m and the second-order raw moment
matrix S of the input feature map and the target fea-
ture map at Layer4 and Layer5. The formulas are as
follows:

1 H       Wm =       h=1 w=1 Xchw (3)
HW

1 H        WS =       h=1 w=1 Xchw  Xdhw (4)
HW

where H and W represent the height and width of the
feature map, respectively, and c denotes the channel
index.

Fig. 1. Overall framework of the algorithm (arrows indicate the flow direction)
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main semantic structures of images and the critical
texture strokes of style images [21–23]. Inspired by
the CBAM attention mechanism [24], this paper
incorporates a convolutional attention module into
the feature extraction process, which includes both
channel attention and spatial attention. The structure
is depicted in figure 2.
Channel attention is represented as a diagonal
matrix, with each diagonal element representing the
channel weight. Feature information is extracted
through average pooling and max pooling, then input
into a multilayer perceptron (MLP) to learn the rela-
tionships between channels. The output of the MLP is
element-wise summed, and the channel contribution
is regulated by the Sigmoid activation function. The
method is detailed as follows:

Mchanle (F) = s (MLP(AνgPool(Fs)) +  

+ MLP(MaxPool(Fs))) (8)
where s denotes the Sigmoid activation function, and
Fs  is the input feature map. 
Spatial attention is calculated as a full matrix, gener-
ating an attention feature map using global informa-
tion. The design principle of this module is to maintain
feature expressiveness while being lightweight and
effectively capturing key features. By applying aver-
age pooling and max pooling operations to compress
the channel dimensions of the feature F s  , followed by
convolution concatenation and Sigmoid activation,
the final spatial attention feature map is generated.
The process is represented as follows:
Mspatial (F s  ) = s (conv3×3([AvgPool(F s  );MaxPool(F s  )]))

(9)
where conv3×3 denotes a 3×3 convolution.

Using the mean m and the second-order raw moment
S, the covariance matrix  of the features is
calculated as follows:

 = S – mmT + ϵI (5)
Where ϵI is a regularisation term added to avoid
numerical instability in the computation, and I is the
identity matrix.
The squared difference of the feature means and the
sum of the differences of the covariance matrices are
used to approximately calculate the Wasserstein dis-
tance, which serves as the style loss for deep fea-
tures Lstylew. The calculation method is as follows:

1/2           1/2  1/2Lstylew = || mx – mt ||2 + Tr (x + t – 2(t     x t    )   ) (6)

where mx and mt represent the mean vectors of the
input and target style image features, and x and t
represent the covariance matrices of the input image
features and the target style image features, respec-
tively.
The total style loss function is:

3ℒstyle = i=1 wl  Lstyleg + Lstylew (7)
Where wl denotes the loss weight of the l layer in the
style layers, controlling the balance between the
details and the overall structure in the generated
image.

Convolutional attention feature enhancement
module
The attention mechanism imitates human visual func-
tion by focusing on different parts of an observed
object to varying degrees, filtering out redundant
information, and retaining key information. This
mechanism enables networks to concentrate on the

Fig. 2. Convolutional attention feature structure: a – Channel attention module structure;
b – Spatial attention structure
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To efficiently optimise the extracted features, inputs
are derived from Layer1 and Layer3 in the shallow
layers and Layer5 in the deep layers of the feature
extraction network. The channel and spatial attention
mechanisms are concatenated for feature refine-
ment. The refined output features, combined with
other layer features, are then used as style feature
inputs into the multiscale optimisation module. Style
image synthesis is jointly optimised using the feature
loss functions Lstyleg and Lstylew , as well as the total
variation (TV) loss. This process is illustrated in fig-
ure 1.

Multiscale image optimisation module
The core idea of multiscale optimisation is to pro-
gressively optimise the image from low resolution to
high resolution. This approach reduces computation-
al cost and the risk of local optima associated with
high-resolution optimisation, while maintaining global
structure and refining details. First, define the scale
range, from the minimum scale factor Smin to the
maximum scale factor Smax , with a series of resolu-
tions, each decreasing by a factor of √2 . Each scale
corresponds to a specific image resolution. Next,
generate the initial image using the mean and vari-
ance of the style image to preserve the style structure
and enhance image diversity.
To further improve the optimisation effect, an expo-
nential moving average (EMA) method with bias cor-
rection is introduced during the multiscale optimisa-
tion process [26]. This method smooths the image
update process, reduces noise and oscillations, and
makes the generated images more stable and natu-
ral. The EMA update method is:

At = a It + (1 – a)At–1 (10)
where At   represents the EMA value after the th itera-
tion, It represents the image after the t th iteration, and
a is the decay coefficient.
To ensure continuity and smoothness between differ-
ent scales, scaling and bicubic interpolation sampling
are used to adjust the image. Subsequently, the style
image features at the current scale are calculated,
and the style target is generated using the Lstyleg and
Lstylew losses for feature reconstruction. To optimise
the quality and realism of the synthesised image, the
total variation (TV) loss function [27] is added. The
TV loss reduces noise and smooths the image by
penalising local pixel value variations. The TV loss
function is expressed as:ℒTV = i,j ((Ii,j – Ii+1,j)2 + (Ii,j – Ii,j+1)2) (11)
Combining the Lstyleg, Lstylew and TV loss, the total loss
function is used to calculate the overall loss. This loss
is backpropagated to update the image, and the opti-
mised image is used as the initialisation for the next
scale. The total loss function is expressed as:ℒtoal = a ℒstyle + b ℒTV (12)
where a and b are the weights of the respective loss
terms.

EXPERIMENTS AND RESULTS
This paper utilises a dataset of collected textile pat-
terns as the style images, with each image having
dimensions set to 512×512. The experiments were
conducted on a computer equipped with an NVIDIA
RTX 3060 GPU, an Intel i7 processor. The deep
learning framework used was Pytorch, and the pro-
gramming language was Python. All experimental
codes and models were implemented and executed
in the aforementioned environment.

Comparison of experimental results of loss
functions
This paper compares the reconstruction effects of dif-
ferent loss functions on the style layers through
experiments and analyses the rationality of the com-
bined loss function strategy. The experimental results
show that using Lstyleg and Lstylew  loss functions on dif-
ferent feature layers result in significant differences in
image synthesis effects.
Figure 3 shows the synthesis results of these two
loss functions. Figure 3, a illustrates the results using
Lstyleg loss, and figure 3, b illustrates the results using
Lstylew loss. The first layer of feature mapping mainly
reconstructs primary features such as colour and tex-
ture; the second and third layers extract relatively
complex texture features; the fourth and fifth layers
capture high-level features, such as the semantic
structure of floral shapes. For the first to third layers
of features, the two loss functions do not differ much
in the overall structure, but the images synthesised
using Lstyleg  loss are smoother, especially in terms of
colour and texture. In the fourth layer of feature map-
ping, the images reconstructed using Lstylew loss
retain the complete floral structure and appear natu-
ral, whereas the images with Lstyleg loss have distort-
ed and unnatural floral structures. The fifth layer con-
tains the most image feature mappings; using Lstyleg
loss results in a more chaotic structure, while Lstylew
loss can reconstruct the floral pattern features more
naturally.
As presented in table 1, in 500 iterations, the average
time per layer for Lstyleg loss is 43.5 seconds, and for
Lstylew loss, it is 99.2 seconds. The latter has a higher
computational cost but better effects on high-level
feature layers. Therefore, to improve efficiency while
ensuring the reconstruction effect of high-level fea-
ture layers, a combined loss strategy is adopted:
Lstyleg loss is used for the first three layers, and Lstylew
loss is used for the last two layers.
Figure 4 shows the effects and synthesis time com-
parison of various loss functions. Figure 4, a is the
textile print pattern used as the style image.
Figure 4, b shows the pattern synthesised using
Lstyleg loss, where the floral pattern structure is dis-
torted and messy, appearing unnatural. Figure 4, c
shows the pattern synthesised using Lstylew loss,
where the pattern structure is coherent but local tex-
tures are unclear, and the colour details are dull.
Figure 4, d shows the pattern synthesised using the



combined loss function, where the floral pattern
structure is complete, and the texture and colours are
clear and bright. The overall visual effect is good, and
the synthesis time is short, indicating that the com-
bined loss strategy is reasonable and effective.

Subjective evaluation of experimental results
To evaluate the effectiveness of the proposed
method, it was compared with the approaches of
Gatys et al. [13], Li and Wand [15], Heitz et al. [20],
and Kolkin et al. [19]. Figure 5 shows the images
generated by each method.
Gatys et al.’s method utilises Gram matrices to cap-
ture the relative relationships between feature maps.
However, this approach often produces artefacts
when local region feature combinations are inconsis-
tent (e.g., first row, first column, and second row,
second column of figure 5). The semantic structure of
the synthesised pattern can be incomplete, leading to
a scattered floral structure (e.g., fourth row, first col-
umn of figure 5). While effective at maintaining over-
all style, this method has notable deficiencies in han-
dling details, especially in high-frequency complex
texture areas. 
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Li and Wand’s method employs Markov Random
Fields (MRFs) for texture synthesis, producing
images with relatively clear local textures. However, it
struggles with colour processing, often resulting in
unnatural colours and noise, particularly in brightly
coloured patterns (e.g., first row, second column;
second row, second column; and fourth row, second
column of figure 5). This noise diminishes the visual
quality, making the synthesised images appear less
smooth and realistic.
Heitz et al.’s method aims to capture complete fea-
ture distributions but suffers from detail loss and inac-
curate edge handling due to the randomness of pro-
jection directions. Consequently, the synthesised
textures differ in detail and edges from the original
images, particularly in complex patterns (e.g., first
row, third column of figure 5). 
Kolkin et al.’s method focuses on local feature match-
ing through self-similarity measures. Each local fea-
ture vector is matched independently, resulting in
consistent local regions but inconsistent feature
matching across the image. This leads to incoherent
global structures and a lack of consistent global tex-
ture control, causing blurred textures (e.g., first row,

Fig. 3. The effect of different losses on image synthesis at different feature layers

Fig. 4. The impact of different style losses on synthesized patterns

SINGLE LAYER TIME CONSUMPTION FOR DIFFERENT LOSS FUNCTIONS

Method
Time

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
Lstyleg 42 s 41 s 43 s 45 47
Lstylew 107 s 88 s 87 s 102 s 112 s

Table 1



fourth column, and second row, fourth column of
figure 5), which affects the overall visual effect.
In contrast, the proposed method excels in pattern
generation. It employs hierarchical loss to handle dif-
ferent features, resulting in highly distinguishable pat-
tern areas, clear structures, and rich style features.
For example, in Pattern 1’s high-frequency complex
patterns (first row of figure 5), the proposed method
produces a more natural synthesis, preserving the
details and complexity. In Pattern 2’s pattern (second
row of figure 5), the targeted reconstruction of low-
level and high-level features results in synthesised
images with bright overall colours, clear edge details,
minimal noise, and no obvious pattern deformation.
Overall, the proposed method outperforms other
comparative methods in synthesising complex tex-
tures and maintaining natural colours, demonstrating
its effectiveness in textile pattern synthesis.

Objective Evaluation of Experimental Results
In addition to the subjective assessment of the gen-
erated results, an objective quantitative evaluation is
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also necessary. This paper uses the following metrics
for comprehensive evaluation: Structural Similarity
(SSIM) [28], Feature Similarity (FSIM) [29], Frechet
Inception Distance (FID) [30], and generation effi-
ciency at different resolutions. 
Generation Efficiency Performance Evaluation: For
the performance evaluation of generation efficiency,
this paper compares the pattern generation time of
different methods at various resolutions. Table 2
shows the generation time (in seconds) for five meth-
ods at four different resolutions. As shown in the
table, the proposed method demonstrates higher effi-
ciency at most resolutions, particularly showing a sig-
nificant time advantage at the 1024×1024 resolution
compared to other methods.
The evaluation metrics used provide a comprehen-
sive view of the performance and quality of each
method. The Structural Similarity Index (SSIM) is
used to measure the similarity between two images,
taking into account brightness, contrast, and struc-
tural information. The closer the value is to 1, the
higher the similarity. The Feature Similarity Index

Note: x indicates that it could not be generated or that it took too long to generate.

Fig. 5. Examples of fabric patterns generated by different algorithms

TIME CONSUMPTION FOR TEXTILE PATTERN GENERATION BY DIFFERENT ALGORITHMS

Size
Time

Gatys Li and Wand Heitz E Kolkin N Our
128×128 19 314 86 55 31
256×256 33 693 186 77 48
512×512 78 x 712 118 80

1024×1024 261 x x 263 242

Table 2



(FSIM) improves upon SSIM by incorporating gradi-
ent and phase consistency, which aligns more close-
ly with human visual perception. The Frechet
Inception Distance (FID) evaluates the quality of
image generation models, with lower FID values indi-
cating higher quality. FID reflects the similarity
between the generated images and real images in
terms of statistical features.
Table 3 shows the SSIM and FSIM metrics for vari-
ous methods across four sets of patterns, while table
4 presents the FID metrics. In these tables, the bold
numbers indicate the best values within the same
group. In table 3, the proposed method performs
excellently overall, especially in the FSIM metric,
where it achieves the best values for all patterns. This
indicates a significant advantage in preserving pat-
tern features. Additionally, the proposed method
obtains the best values in three out of four sets of pat-
terns for the SSIM metric, demonstrating its superior
performance in structural similarity. In table 4, the
proposed method achieves the lowest FID values in
three out of four sets of patterns, and its overall FID
value is lower than that of other methods, indicating
strong image generation capability. Combining these
metrics with generation efficiency, the comprehen-
sive analysis shows that the proposed method has a
significant advantage in preserving pattern features
and generating high-quality images. This proves its
effectiveness and reliability in the task of textile pat-
tern generation.
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COMPARISON OF SSIM AND FSIM VALUES OF FABRIC PATTERNS GENERATED BY DIFFERENT ALGORITHMS

Method
pattern 1 pattern 2 pattern 3 pattern 4

SSIM FSIM SSIM FSIM SSIM FSIM SSIM FSIM
Gatys 0.053 0.498 0.161 0.42 0.088 0.494 0.037 0.521

Li and Wand 0.950 0.559 0.059 0.443 0.031 0.534 0.043 0.613
Heitz E 0.058 0.519 0.093 0.405 0.091 0.499 0.042 0.505
Kolkin N 0.064 0.533 0.172 0.433 0.086 0.511 0.065 0.531

Our 0.111 0.671 0.219 0.462 0.151 0.548 0.054 0.567

Table 3

COMPARISON OF FID VALUES OF FABRIC PATTERNS
GENERATED BY DIFFERENT ALGORITHMS

Method
FID

pattern 1 pattern 2 pattern 3 pattern 4
Gatys 606.743 957.293 254.106 702.38

Li and Wand 137.743 1052.671 426.433 343.099
Heitz E 220.682 1109.606 1222.413 942.944
Kolkin N 360.702 988.794 482.411 374.394

Our 374.595 607.989 228.73 291.368

Table 4

Fig. 6. Attention feature ablation experiment: a – input
style patterns; b – generated patterns without the 

channel-spatial attention module; c – results after adding
the channel-spatial attention module

a                            b                            c

Ablation experiment
To verify the effectiveness of the attention feature
module, a series of ablation experiments were con-
ducted. As depicted in figure 6, figure 6, a displays

two input style patterns: one is a traditional Chinese
cloud pattern textile, and the other is a modern
colourful fabric texture pattern. Figure 6, b presents
the generated patterns without the channel-spatial
attention module, while Figure 6, c shows the results
after adding the channel-spatial attention module.
Other parameters were kept constant throughout the
experiments.
From the experimental results, it is evident that the
cloud pattern textile in figure 6, b exhibits artefacts at
the overlapping cloud elements, and the transitions
between pattern elements appear unnatural.
Similarly, in the colourful fabric texture pattern of fig-
ure 6, b, there are artefacts at the junctions of texture
elements, with some areas showing colour overflow.
In contrast, the generated patterns in figure 6, c show
significant improvements in these aspects. The tran-
sitions between elements are more natural, and the
detail and overall visual quality of the patterns are
enhanced. Therefore, the attention feature module
has a crucial impact on the generation effect of the
algorithm and is an indispensable part of the algo-
rithm.

CONCLUSION AND FUTURE WORK
This study proposes a fast multiscale synthesis algo-
rithm for textile patterns based on neural networks.
By combining low-level and high-level feature losses,
the algorithm meticulously processes pattern fea-
tures while preserving their semantic structure,



achieving comprehensive style transfer. The convolu-
tional attention feature enhancement module refines
features, reduces artefacts, and improves visual
quality, while the multiscale optimisation module
enhances image texture and layering. Experimental
results indicate that this method outperforms existing
methods in terms of visual effect and scalability of
pattern synthesis. By extracting and applying the
style features of inspirational patterns, this method
effectively helps designers focus on creativity and
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concept development, improving design efficiency
and promoting the intelligent development of textile
design and production. However, this study still has
room for improvement. The generation time for high-
resolution patterns needs optimisation, and there is a
lack of interactive design features. Future research
will explore the application of different attention
mechanisms and interactive design modules, as well
as improve the efficiency of high-resolution pattern
generation.
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